skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haro-Mares, Nadia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Haro-Mares, N.; Brodrecht; Wissel, Till; Döller, S.; M. Rösler, L; Breitzke, H.; Hoffmann, M.M.; Gutmann, T.; Buntkowsky, G. (Ed.)
    The physicochemical effects of decorating pore walls of high surface area materials with functional groups are not sufficiently understood, despite the use of these materials in a multitude of applications such as catalysis, separations, or drug delivery. In this study, the influence of 3- amino-propyl triethoxysilane (APTES)-modified SBA-15 on the dynamics of deuterated ethylene glycol (EG-d4) is inspected by comparing three systems: EG-d4 in the bulk phase (sample 1), EG-d4 confined in SBA-15 (sample 2), and EG-d4 confined in SBA-15 modified with APTES (sample 3). The phase behavior (i.e., melting, crystallization, glass formation, etc.) of EG-d4 in these three systems is studied by differential scanning calorimetry. Through line shape analysis of the 2H solid-state NMR (2H ssNMR) spectra of the three systems recorded at different temperatures, two signal patterns, (i) a Lorentzian (liquid-like) and (ii) a Pake pattern (solid-like), are identified from which the distribution of activation energies for the dynamic processes is calculated employing a two-phase model. 
    more » « less
  2. Abstract This review gives an overview of current trends in the investigation of confined molecules such as higher alcohols, ethylene glycol and polyethylene glycol as guest molecules in neat and functionalized mesoporous silica materials. All these molecules have both hydrophobic and hydrophilic parts. They are characteristic role-models for the investigation of confined surfactants. Their properties are studied by a combination of solid-state NMR and relaxometry with other physicochemical techniques and molecular dynamics techniques. It is shown that this combination delivers unique insights into the structure, arrangement, dynamical properties and the guest-host interactions inside the confinement. 
    more » « less